

Pressure dependence of structural properties of FeSe

Matthias Raba^{1,2}, Pierre Rodière², Pierre Toulemonde², Volodymyr Svitlyk³

¹Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, Grenoble, France ²Institut Néel, CNRS, Grenoble, France

³European Synchrotron Radiation Facility (ESRF), Grenoble, France

Outline

- I. Introduction
 - I. Iron-based superconductors
 - II. FeSe
- II. Synchrotron XRD
 - I. Technique
 - II. Samples
 - III. Protocol
 - IV. Analysis
 - I. Single-crystal analysis
 - II. Powder-like analysis
- III. Conclusion

Introduction

Iron-based superconductors

• Superconducting layers of **FeAs** (pnictides) or **FeSe** (chalcogenides) and possibly separated by charge reservoir atom layers (LaO, Ba, K, ...).

Q. Si & al; Nature Reviews - Materials, article number 16017 (2016)

Iron-based superconductors

- In pnictides:
 - Lattice distortion T_S + a long range magnetic order T_N (magneto-elastic coupling)
 - Superconductivity enhanced along these transitions (magnetic fluctuations)

FeSe (before 2014)

- $T_c \sim 8 K$ at P = 0, $T_c \sim 38 K$ at $P \sim 6 GPa$
- Tetragonal at room temperature
- Structural transition T_S to orthorhombic cell with **no magnetism**
- AFM transition T_N

Red: Our work (resistivity measurements) Green: μ-SR measurements (Bendele et al. (2012)) Orange: Resistivity measurements (Miyoshi et al. (2014))

Bendele et al. PRB 85, 064517 (2012) Miyoshi et al. JPSJ 83, 013702 (2014)

FeSe (before 2014)

- $T_c \sim 8 \text{ K}$ at P = 0, $T_c \sim 38 \text{ K}$ at $P \sim 6 \text{ GPa}$
- Tetragonal at room temperature
- Structural transition T_S to orthorhombic cell with no magnetism
- AFM transition T_N

Red: Our work (resistivity measurements) Green: µ-SR measurements (Bendele et al. (2012)) **Orange:** Resistivity measurements (Miyoshi et al. (2014))

Bendele et al. PRB 85, 064517 (2012) Miyoshi et al. JPSJ 83, 013702 (2014)

7

 $a \neq b$ a = bh а Orthorhombic cell Tetragonal cell Cmma

Communauté

h

P4/nmm

IÉFL

Communauté UNIVERSITÉ Grenoble Alpes

FeSe (now)

- 3 possible structural transitions :
 - Orthorhombic-Tetragonal at 20K, 1.9 GPa
 - Orthorhombic-Tetragonal at 50K, 1 GPa
 - Tetragonal-Monoclinic at 50K, 2 GPa FeSe

- Resistivity measurements (OR-T)
- μ-SR measurements (Bendele et al. (2012))
- Resistivity measurements (Sun et al. (2015))
- ⊙ Synchrotron XRD (Kothapalli et al. (2016))
- ▲ Superconducting transition (Sun et al. (2015))
- Structural transition (our ESRF measurements)
 Structural transition (our ESRF measurements) (tetragonal <-> monoclinic)

Bendele et al. PRB 85, 064517 (2012) Sun et al., arXiv:1512.06951v1 (2015) Kothapalli et al., arXiv:1603.04135v1 (2016)

Motivations and questions

- Get a better understanding of the mechanism of superconductivity
 - Magnetic fluctuations
 - T_c variations
- Is there a magneto-elastic coupling?

Know the crystallographic structure Complete PT-phase diagram of FeSe

The European Synchrotron

Synchrotron XRD

Communauté UNIVERSITÉ Grenoble Alpes

Technique

- ESRF (Grenoble) on ID27
- Diffraction on single crystals
- Diamond anvil cell and cryostat:
 - @ 20 and 50 K
 - From 0 to 10 GPa
 - Pressure-transmitting medium: Helium

Samples

- Single-crystals of FeSe (Pierre Toulemonde, Néel Institute)
- Chemical Vapor Transport technics
- High quality crystals:
 - Quantum oscillation measurements

13

Protocol

Pressure dependences at 20 and 50 K

Analysis

- XRD on single crystals
 - Analysis of single crystal data (Crysalis Pro)
 - Analysis of powder data:
 - Integration of single crystal data to obtain powder diagrams
 - Specific Bragg peak studies

Single-crystal analysis (T=20K)

From -32° to 32° (0° = c-axis)

Communauté université Grenoble Alpes /

Deduction of pressure dependence of the cell parameters:

Deduction of the bulk modulus (resistance to compression):

Murnaghan state equation:

$$x(P) = x_0 \left(1 + P\left(\frac{4}{K_{0_x}}\right) \right)^{-\frac{1}{4}}$$
$$x = a, b, c, V$$

 K_0 : bulk modulus at P = 0

Fig. a-, b- and c-axis pressure dependence

Single-crystal analysis (T=20K)

Deduction of the bulk modulus (resistance to compression):

Fig. a-, b- and c-axis pressure dependence

Murnaghan state equation:

$$x(P) = x_0 \left(1 + P\left(\frac{4}{K_{0_x}}\right) \right)^{-\frac{1}{4}}$$
$$x = a, b, c, V$$

 K_0 : bulk modulus at P = 0

	Orthorhombic phase	Tetragonal phase
K _{0a}	167 <u>+</u> 4 GPa	$192\pm 2~{ m GPa}$
K _{0b}	177 <u>+</u> 5 GPa	$184\pm 2~\mathrm{GPa}$
K _{0c}	54, 6 ± 2, 4 GPa	116 ± 7 GPa
K ₀	30, 8 ± 1, 9 GPa	41, 9 ± 1, 6 GPa
K ₀ (Millican et al.)	31 GPa	

Single-crystal analysis (T=20K)

- Conclusion:
 - @ 20 K:
 - Structural transition at 1.9 GPa
 - Bulk modulus jump
 - Biggest phenomena: along the c-axis

Communauté université Grenoble Alpes

Analysis

- XRD on single crystals
 - Analysis of single crystal data (Crysalis Pro)
 - Analysis of powder-like data:
 - Integration of single crystal data to obtain powder-like pattern
 - Specific Bragg peak studies

Communauté [©] UNIVERSITÉ Grenoble Alpes /

Powder-like analysis (T=50K)

Communauté UNIVERSITÉ Grenoble Alpes

Powder-like analysis (T=50K)

- Studying of the (400)/(040) peaks
 - Deduce cell parameters *a* and *b*

Communauté université Grenoble Alpes /

Powder-like analysis (T=50K)

Pressure dependence of (400)/(040) double peak

VÉEI Communauté UNIVERSITÉ **Grenoble Alpes** / Powder-like analysis (T=50K) Fit peak with equation: Pressure dependence of (400)/(040) double peak

Pressure [GPa]

Millican et al., doi:10.1016/j.ssc.2009.02.011

- Studying of the $(331)/(\overline{3}31)$ peaks
 - Looking at the γ angle

Communauté UNIVERSITÉ **Grenoble Alpes** /

Communauté

Powder-like analysis (T=50K)

Communauté

Powder-like analysis (T=50K)

Powder-like analysis (T=50K)

- Conclusion:
 - @ 50 K:
 - At low pressure, orthorhombic phase
 - Between 1 and 2 GPa, tetragonal phase
 - Beyond 2 GPa (magnetic phase reported by Bendele et al. (2012)):
 - splits between a and b
 - Possible monoclinic cell

Communauté université Grenoble Alpes

Conclusion

- FeSe PT-phase diagram is still controversial
- At 20 K:
 - Structural transition (OR-T) at 1.9 GPa
- At 50 K:
 - Structural transition (OR-T) at 1 GPa
 - Possible structural transition at 2 GPa
 - Split between a and b
 - γ angle not equal to 90°

Acknowledgement

- Institut Néel:
 - Pierre Rodière
 - Pierre Toulemonde
- ESRF:
 - Volodymyr Svitlyk

Iron-based superconductors

- Typical Fermi Surface (FS):
 - Holes near the Γ point
 - Electrons near the Y points

Communauté université Grenoble Alpes /

Single-crystal analysis (T=20K)

High crystal degradation beyond 6GPa

6.23GPa, Okl plan

6.9GPa, 0kl plan

Communauté UNIVERSITÉ Grenoble Alpes ÉF

Single-crystal analysis

Two possible working cells: orthorhombic or tetragonal cell.

Communauté ÉFI

Single-crystal analysis

Two possible working cells: orthorhombic or tetragonal cell.

Powder like analysis

Something happens at 2 GPa (AFM transition reported by Bendele et al., 2012)

Communauté UNIVERSITÉ Grenoble Alpes

Single-crystal analysis

At high pressure (> 8*GPa*), coexistence of two crystallographic phases

Volodymyr Svitlyk, ID27, ESRF, Grenoble