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Outline : Topology of the electronic
structure probed by ARPES

Some generalities about topology, geometry and symmetry

(Parallel transport, Berry connection and Berry curvature , magn. monopoles,

The Chern topological and Kane-Mele topological insulators in 2D

ARPES of Kane-Mele topological insulators in 3D

Dirac semi-Metals and Weyl semi-metals (ARPES and Spin-ARPES)



Angle-resolved photoemission spectroscopy

- a photon-in electron-out technique hv ' ko =

- one measures the kinetic energy and the °¢4\

momentum of the photoemitted electrons ‘O\ |

- mapping the electronic band structure J >
K =k

Sample x

Fermi surface

D
- determination of the Fermi surface =
[}
(momentum distribution curves) v
- and band dispersions
Tilt
(energy distribution curves) Polar

Band dispersion



To pology Global properties preserved under continuous deformation

A closed surface is characterized by its genus, g = # holes

g=0
', &
Topological number
(number of holes) 6
\_

Trivial and non-trivial topology : the Euler characteristic for polyedra x=V-—-E+F

Vertices /\ Edges Fac;}

x=20

Topologically non trivial Topologically trivial

Y = 2 ¥ =1 Euler characteristic

Topological number = global property

Relation with genus number : X = 2(1 - g)



Geometry : connection and curvature

Vector field on a curved surface

Impossible to compare 2 vectors
at 2 neighboring points (they belong
to 2 different vector spaces)

An additionnal structure is needed :
THE CONNECTION

A rule to transport a vector from
one point to neighboring points
(parallell transport)



Geometry : connection and curvature

Impossible to compare 2 vectors
at 2 neighboring points (they belong
to 2 different vector spaces)

An additionnal structure is needed :
THE CONNECTION

A rule to transport a vector from
one point to neighboring points
- - (parallell transport)

Possibility to derive the vector field

COVARIANT DERIVATIVE



Relation between geometry and topology

Example of parallel transport on a sphere

_ Parallel transport :
Geometric prop. : curvature

After a round trip, there
is an angle proportionnal

Transport on a flat surface : to the curvature

no rotation .
Non-integrable angle

(depends on trip)

Relation between global (topology) and local (geometry) properties

Gauss-Bonnet theorem : 1 K : Gauss curvature
x=— ¢ KdS (sphere : K =1/R2:x = 2)

Euler characteristic global local curvature



Local (Gauge) symmetry

Gauge principle (electromagnetism) : one imposes a local symmetry by changing the local phase
U — U'(F) = 20 W(7)  A(F) is an arbitrary function
it is necessary to introduce an interaction (gauge field (/T, 0 )) to preserve the invariance

R VAN
(7 — qA(7, 1)) B Change of phase compensated by
H = + qp(7,t) the change of connection

A'= A+ VA




Local (Gauge) symmetry and geometrical phase

Gauge principle (electromagnetism) : one imposes a local symmetry by changing the local phase
U — U =enh) g A(7) is an arbitrary function

it is necessary to introduce an interaction (gauge field (/T, 0 )) to preserve the invariance

- A gives the evolution of the geometrical

phase between two points (Aharonov-Bohm Pueo(P—Q) = %/ A dl

exp.) : A plays the role of connection

-®=®p,,, on a closed curve is gauge invariant (Berry phase) (

D perny = %fg.dz: %/g.m

- 1 \

Berry phase Berry connection Berry curvature
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Consequence : Non trivial topology of electromagnetism (Monopole)

_ 1oGm T Maxwell

Monopole of chargedmat #=0 | B,,(7) iy equation : VB = popm = 110Gmd(7)

— —

pour 7 # 0, ﬁ-émzo, Bm=VAA

But there is no uniqueff(?) function describing ém everywhere!

to qm(l+cosf) _ = to Gm (1 — cos@)
- A 0,0) = —
A rsin 0 e n(r,0,9) Ar rsinf e

IATS (7‘, 97 ¢) —

Ay not defined for =r

As not defined for =0

Dirac strings (Dirac 1931, quantification
of the electric charge )

The topology of the electromagnetism with monopole is non-trivial :
impossible to have only one regular A function, (topology of the sphere!)




Geometrical interpretation of Gauge theory
Wu & Yang (1975)

Geometry Gauge invariance
Connection (parallel transport) vector potential A
. q [ » .7
Rotation of a vector transported Phase shift ¢ = 3 ]{A - dl
along a closed curve along a closed curve

. F,
o/
@ { 'A\\; =

& =

Curvature Magnetic field é — ﬁ A A’

Lo L curl of A
%A-dK:/B-dS
C S




Geometrical interpretation of Gauge theory

Geometry

Connection (parallel transport)

Rotation of a vector transported
along a closed curve

Curvature associated with ®

Gauge invariance

—

Vector potential A

Phase shift

along a closed curve

Y
b t————o

. —_—
u " \/ -
'

m

q = -
b==-A-dl
i f

Magnetic field
B=VAA

What about the
topology of the
electronic structure
in crystal?

Berry connection

A(k) inBz

Berry phase
®erry = § A E) - dF
C

Berry curvature



Topology of the electronic structure

Bloch states (k) |u!™) = £ |,
( )|uk ) “F ’uk ) The phase of |u§—€»n)>mustvarycontinuously

from point to point in the Brillouin zone
/[ = [ulMy eie®)
k k

Topologically non-trivial if
Equivalent points pologically

a(k) # 21 X p
Srillowin 7 Closed gurve since Geometrical phase
rillouin Zone i e dé)gw=/f(”)(/5)'d§

Berry connection

Periodicity of the
reciprocal space :

2 or 3 D-torus
Berry curvature

QM (k) = Ve A A™ (k)

Analogs to vector potential and magnetic field in reciprocal space



Topological number : Chern number

Generalisation of Gauss-Bonnet theorem :

1 St i
Cl=—]§ Q(k) - d°k Cie”z
2T JiezB

Chern number

(analogy with the
Euler characteristic)

Berry curvature in k space : same behavior than magnetic field

S
|
-]

Time reversal symmetry (TRS) Q’(n)(g) — _Q’(n)(_;‘c')

Inversion symmetry (1S) (”)(k) (")( k)

In presence of both TRS and IS : Q(n) (l;) 0 \V/k'



Chern topological insulators

Haldane model : for a two-band insulator (spinless electrons) (2 sites A &B per unit cell)

In each k point, we have a two-level system : 4

= h(k) &

I

Pauli matrices

1. h’Z ha: _|_ h
periodiconthe Bz~ H(k) = ( Uy )

he —ihy — —h.

HEG) =Py |5 = £n(k) (A & B sites) .
o sin 0z cos o7
parametrization by the () =h(k) | sin6;singp
spherical coordinates of a(k) cos 0
The Bloch sphere

. h(k

) = ME)

h(k)



Chern topological insulators

Haldane model : for a two-band insulator (spinless electrons without time reversal symmetry)

In each k point, we have a two-level system : 4 "
g Y e ) = +h(k)

= h. h, + th > oo,
periodic on the BZ H(k) = ( W ih _—27’ Y ) = h(k)- &
T Y z

o . sin 0z cos o7 i )
parametrization by the h(k) = h(k) ( sin 0 sin ¢ ) ]g "
spherical coordinates of (k) cos 0

eigenvectors : ul) = ( _sin g ) ulH) = ( -COS.% )
Cok e'® cos g k el smg

For 9 =0, |ul%_)>: ( 9¢ ) is ill-defined : @ undefined between 0 and 27
e

multiplying by e ~*? solves the problem in #=0 but same problem appears at =7

Non trivial topology : not possible to use unique set of eigenvectors



The connection and curvature can be calculated :

(8) _ ., ()8 (-)sy _ 1 14cosb in Us
Acb _Z<UE |V¢UE ) = 2  hsind

(N) ., (=)N (-)N _1.1—6089 .
Ap =iy T WVeu T =5 e n Un

We recognize the topology of the monopole

two eigenstates defined
in Uy and Ug resp.

1 - -
Chern-Gauss-Bonnet Th. : Ch %Q(h) . d*h

T o

Chern number = number of « magnetic monopoles »

C1#0

topologically non trivial band
\ entire covering

of the Bloch sphere

« magnetic field » of a
Monopole in parameter

—

spaceat h =20




Case of graphene

Honeycomb lattice with two atoms per cell (2 sub-lattices A, B)

B Inversion and time reversal symmetries Q(i)(lZ) =0

Semi-metal with 2 P, bands with a linear dispersion to the K point

@) (b)

Close to the K points : HE (cj) = hvg (ﬁqxdx + quy)

=41 (K,K') , _
, Massless (2+1) Dirac equation

Energy

Domain of parameters : circle (does not cover
the entire Bloch sphere)
Topologically trivial bands

haw (eV)

5.6 x 1013

1.1 %108 1.5 % 108 % - 3.7 x 1013

. _ ARPES effect of doping
Bostwick et al, Nature Physics (2007)




Chern insulator

To have a topologically non-trivial band :

To break TRS, Haldane introduced a complexe second neighbor hopping : t26jEZ

Hg(cj) = hwr(§ qe0. + qyoy)

\ , Gap \

/
—_ L . openin
< 05 ‘LY p g\
@ e 22

Same sign of the curvature on K and K’

o) = 2

]{ Q) (k) -d?’k £ 0
27 keZB

breakdown of the time reversal symmetry

—53\/§t281n¢ (¥

Change of sign in K and K’ points

K
T/\
§/ Same curvature
| .
in X and K’

Bloch sphere (2 poles)

n(q) covers the entire

Topologically non-trivial band




Topolological edge states of a Chern insulator

A The gap has to be closed
at the surface : metallic

Vacuum : Trivial insulator (1, = ()

surface state

-Band edge states are robust
against weak time-reversal

invariant perturbations

-No scattering to the left!
Quantum Hall insulator (edge states are chiral)

Chiral edge state : propagation to the right (to the left on the opposite edge)

E \/ TRS broken!
! } Es

Haldane

Model /\

Quantum Hall insulator




Kane-Mele topological insulators in 2D : Z, invariant

New kind of topological insulator induced by time reversal symmetry (Chern number=0).

Kane & Mele model = 2 copies of the Haldane model (one for each spin direction, 4 bands)

« Spin-orbit » interaction with preserving S

But for each spin band, time reversal is not a symmetry

two « Chern numbers » ¢, ¢ with opposite sign CT + Ci —()
Cs= (CT _Ci)/2 ZQ Invariantindex : v =0, 1
VAN
Band edge are spin polarized Trivial Non-trivial
v=>_0 Edge band structure
vacuum
| == —
QSH Insulator ;, — 1
0 n/a — k

Quantum spin Hall insulator



Kane-Mele topological insulators in 3D

Similar to 2D topological insulators but with 4 invariant Z, numbers (vo; V1, V2, V3)

For strong TI - 0Odd number of gapless topological edge states

v =1 (odd number of Fermi surface crossings (between 2 TRIMs)

TSS Band
inversion

- Spin-momentum locked (spin-polarized surface states)

BVB

In Bi,Se; ,Bi,Tes : single Dirac cone surface states

bulk band inversion

E A
: Cond. Band
|
BT : Inversed
eap : gap Relativistic
|
effect, SOC
|
|
|
’ |
Se =~ :
|
I Val. Band
Separated o ! .
atoms Trivial Insulator Topological Insulator



Kane-Mele topological insulators in 3D

ARPES can probe the topological edge states! 2D surface states

i
c k (1/A) AS growgndmg energy (eV) D h0|e dkO(BF)d T| 10 /%mdmg energy (eV) = Fe 120/0
| 7 ~—2 | ‘
N . . } 0 TR — - - — — - - - - -
No gap —7 { - I Gay 1\
= =% . |G =S | / «. v
.. .. e D
| % | . N1 . |
Es = & /_/\\ = | I;\ =)
g | i B }\ 04 1 P ‘
04 02 0 005 0 005 04 02 0 I "oos 005 04 02 0
| k (1/A) Binding energy (eV)
Surface state Bi,Te; Chen et al. | Doped with magnetic atoms
(topol. edge state) Science 329, 659 (2010) | Breakdown of the TRS
i
. i .
A o 0.3eV" Room Temp. Tl Topological insulator I trivial insulator

 dhet! ~'
’*\ v D Spin texture of edge state probed by spin-ARPES

3 ] X Hsieh... Hasan et al., Nature 460, 1101 (2009)
 § ‘A“:‘h
SHE Spin-momentum locking

Intensity (arb. units)




Topological states in semi-metals : Dirac semi-metals

Normal insulator TDS

Dirac semi-metals can be found at the transition
between normal and topological Insulators
(3D analogs of graphene )

. > crystal symmetries can help stabilize

Band ;wersion
topological quantum phase transition the 3D Dirac fermions (C3 axis in Na3Bi)

First observation of a 3D Dirac semi-metal (Liu et al. Science 343, 864 (2014))

-linear dispersions across

the Dirac point along all

3 momentum directions

Binding Energy (eV)
o O O o
o OO A~ N O




Topological Weyl semi-metals

In particle physics, a Dirac fermion is described by a bispinor whereas a Weyl fermion is
described by a spinor (well defined chirality) : Weyl fermion ~ Dirac fermion

crossing of two crossing of two similar behavior in condensed matter
spin-deg bands non-deg bands
deg. 4 deg. 2 Weyl nodes of opposite chiral charges
TRand! © J TRSorls = magnetic monopoles in k space
. N> i - =
symmetries ‘[ k:'reak'ng Source of Berry curvature (k)
Q(k)=0 i \;i (k)#0
One Dirac node Two Weyl nodes

Weyl nodes appear by pairs

Gauss Th. : flux of Berry curvature

7{ G(E) - 2F=(ns +n_)=0
Sz . .
Positive & negative
Monopoles (chiral charges)

periodicity /
[~

- = - = — N\a
Qk)=Qk+ G)




Topological Weyl semi-metals

In particle physics, a Dirac fermion is described by a bispineur whereas a Weyl fermion is

described by a spineur (well defined chirality) : Weyl fermion ~ % Dirac fermion

crossing of two
non-deg bands

crossing of two
spin-deg bands

similar behavior in condensed matter

deg. 4 deg. 2 Weyl nodes of opposite chiral charges
TR and | y TRS or IS = magnetic monopoles in k space
. N .
symmetries t" breaking Source of Berry curvature

)70

(k)=0 “

One Dirac node Two Weyl nodes

Surface Topological
wemml-ar edge state :
open Fermi -arc

Breaking
symmetry

Yang et al. Nature Phys. (2015)

O® Surface
Fermi arc



Discovery of a Weyl semimetal by three Xu et al. science (7 Aug. 2015)
groups in non-centrosymmetric TaAs (NbAs) Yang et al. Nature Phys. (17 Aug. 2015)
Lv et al. Phys. Rev. X (31 July 2015)

Surface Brillouin zone

24 Weyl nodes ® O M
(12 pairs) in the BZ!

Mirror planes

2 Weyl nodes of the same chiral charge are projected on the same surface point

Weyl Fermions

ARPES measurements
of the Bulk Weyl cones

(k. selected by the choice
of the photon energy)

Eg (eV)

Yang et al.
Nature Phys. (2015)




Fermi surface of the edge states
(trivial and nontrivial states)

Y<I—Y

EXp.)—<<_lt,_>>—( Ca|C.>—(<_1:_))—(
i 15{ ® L] 0 7 i
05 a2 T
I . @z@:@ @r@}:@
S s ol 6=, =8
— . - S— - ==
=15 140 © 40 Q b 0
Lv et al. Phys. Rev. X (2015)
-0.2
Surface
UV-ARPES
(90 eV)
~0.4
Bulk
SX-ARPES
06 (650 eV)

0.0
k (A

-0.1

0.1

Surface-Bulk correspondence
of the non trivial topological
states in TaAs

Yang et al.
Nature Phys. (2015)



SPIN-ARPES ~mmm)  Spin texture in Weyl semi-metals

0.9

0.8

0.7
@ . o
E os Spin texture in the TaAs
x .

05 & High Weyl semi-metal

0.4 Ca -

0.3

Low
-0.2 -0.1 0.0 0.1 0.2 -0.2 0.0 0.2 0.4 0.6
k, (n/a) ky (n/a)

Lv et al., PRL 115, 217601 (2015)




CONCLUSION

ARPES probes the non-trivial topology in insulators and in semi-metals

- Non-trivial topology due to inversion of bands (generally due to spin-orbit) and
usually protected by symmetry

- Topological edge states with spin texture

- Quasiparticle analogs to particles in high energy physics

- Topological states in condensed matter with no analogs in particle physics :
space-group symmetry instead of Lorentz (space-time) symmetry (topological
cristalline insulators, type Il Dirac and Weyl semi-metals, etc....)
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