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Modern applications of machine learning in quantum sciences
Anna Dawid, Julian Arnold, Borja Requena, Alexander Gresch, Marcin Ptodzien, Kaelan Donatella, Kim Nicoli, Paolo Stornati, Rouven Koch, Miriam Biittner, Robert Okuta, Gorka Mufioz-Gil, Rodrigo A. Vargas-Hernandez, Alba Cervera-Lierta,
Juan Carrasquilla, Vedran Dunjko, Marylou Gabrié, Patrick Huembeli, Evert van Nieuwenburg, Filippo Vicentini, Lei Wang, Sebastian J. Wetzel, Giuseppe Carleo, EliSka Greplovd, Roman Krems, Florian Marquardt, Michat Tomza, Maciej
Lewenstein, Alexandre Dauphin

In these Lecture Notes, we provide a comprehensive introduction to the most recent advances in the application of machine learning methods in quantum sciences. We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement

learning algorithms for phase classification, representation of many-body quantum states, quantum feedback control, and quantum circuits optimization. Moreover, we introduce and discuss more specialized topics such as differentiable programming, generative models,
statistical approach to machine learning, and quantum machine learning.



;_Y em&  Applications of Machine learning in quantum physics

Analysis of data generated in condensed matter / AMO

Experimental images (STM. quantum gas microscope)
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Computational quantum physics
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Part 2. Neural quantum states
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1. Analysis of experimental / synthetic data




Automatic detection of phases and phase transitions

e Idea : Machine learning 1s good at classifying images. Let’s try to classify different phases of
matter, given some input (1deally « pictures »)

Example 1 (synthetic data) : Snapshots of Monte Carlo samples of 2d Ising model

Hidden Prediction over the

Training at extremal 1ayer whole phase space

regions of phase space Input

High Low
temp erature temp erature

Output layer

Carrasquilla, Melko, Nature Physics (2017)

e Conclusion : Very simple networks pick the critical temperature (& critical exponents) with good
accuracy (even if trained only at low / high T)

e More sophisticated networks & architectures can be used

e More complex phases have been detected (topological phases, disordered localized phases)
albeit often with feature-enginereed data (physics based)



Automatic detection of phases and phase transitions

e Idea : Local probes in physics generate a large amount of data/images that ML can exploit

Example 2 (experimental data) : STM 1mages on high-temperature superconductors

e Physics question: 1s electronic density showing a modulation? Important to discriminate theories

e Fourier analysis 1s not precise enough
Zhang et al., Nature (2019)

Training Set Generation

Category 1
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e Moreover, different output probabilities depending on images presented g
: : : . . . . 0.0
in x or y direction. Physics conclusion 2 : electronic nematic state ‘



Automatic detection of « good samples »

' Idea : Some laborious part of experiments can be easily automated

Example 3 (experimental data) : Detection of flakes in 2d material physics — Greplova ez s,
PR Applied (2020)

e Problem: Prepare 2d materials by selecting flakes in exfoliated hbN on a silicon waffer

e Difficult and lengthy task because of the diversity of the data and the sparsity of « good » flakes

Pre-processing

- B

(acceptance rate = 50%)

~10 000 candidates ->
| ~50 useful flakes

Training

already made

Validation by user

Prediction of candidate flakes
e Rk: The sparsity (< 1%) of good flakes requires a careful training

e Robustness: against changes in the microscopy conditions (illumination, color balance etc)

e Transfer learning: good transferability to other systems to speed up training



Our work: Characterize the many-body localization transition

e Many-body localization: due to strong disorder, a metallic system can become insulating (even at
very high energies!)

. . . Localized insulator
Model = Quantum spin chain + Metallic N

random magnetic field of strength h h Disorder h

* Motivation: Reasonable estimate (but not precise) of the transition point from physics analysis.
Universality class unknown (reasons: Simulations only on small samples + No known order parameter)

e Guidelines for ML analysis: Least possible human bias (we include no physics). Scalability with
system size, interpretability 1f possible

Input:

FEigenstate amplitudes \Insulatmg

prediction

Théveniaut, FA, PRB (2019) Metal
prediction

Overall phase diagram relatively well recognized (with strongly metallic and insulating phases)



Our work: Characterize the many-body localization transition

e Many-body localization: due to strong disorder, a metallic system can become insulating (even at
very high energies!)

D L L] °
: . - - ocalized insulator
Model = Quantum spin chain + Metallic R

random magnetic field of strength h h Disorder h

* Motivation: Reasonable estimate (but not precise) of the transition point from physics analysis.
Universality class unknown (reasons: Simulations only on small samples + No known order parameter)

e Guidelines for ML analysis: Least possible human bias (we include no physics). Scalability with
system size, interpretability 1f possible

1.0
Input:
Eigenstate amplitudes

’7MBL - 12.0-
hug. = 10.0

hus, = 8.0 |7 ‘
Estimate of
e critical point
=29 | (physics-based)
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Théveniaut, FA, PRB (2019) 8 10

Large error bars on critical point

e Conclusions (for this problem): 1. Difficult to obtain precise results without bias (e.g. input data)
2. ML does not free from finite-size effects



2. Neural quantum states

Learning |¥)



Neural quantum States Catleo & Troyer, Science (2017)

e Parametrization of a quantum wave-function (e.g. for N spins 1/2) with a neural network
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e The architecture of the network (number & size of layers, choice of non-linear function) 1s free

In general fixed

e The weights W and bias b are variational parameters to optimise upon



Some examples

Simplest example: Restricted Boltzmann Machine (RBM) Catleo & Troyer, Science (2017)

M Hidden neurons
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Convolutional neural network (CNN)

I |
Sum
o — . (@) _ (g—1) (9)
o u‘_l". .l', -‘. h"':g:k - F ( Z hlf]—{—mu,k,-}-mm Kifllymysmx)
=] = . lomy me
i “ Ecnn (o) e
| 1 ﬁimﬁ = F (K@ x pla—D)

Channels: 12 10 8 6 4 2 Choo et al., 2019

Takes explicit advantage of locality through filters
Calculations are lighter-weight
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Why quantum neural states?

e Universal representation theorems for multi-layer networks
Does not necessarily help in building this network in practice

Cautions about too shallow networks

e Physical arguments: (Deep) neural networks can have volume-law entanglement

Hidden Layer X §
Tt el TBIR0E (2019) ‘__‘__.___.H;.__.___.__. With order N parameters

Deng, L1, Das Sarma., PRX (2017)

BEF

Visible Layer

e Relation to other approaches:
Many of your favorite variational wave-functions can be combined with/translate into NQS
Relation between NQS and tensor-network states
Eftficient contractible TNS can be constructed as NN (with polynomial size) = Sharir et al., arXiv:2103.10293

RBM (and deep BM) can be represented as 2d TINS Li et af.., arXiv:2105.04130

e Computational advantage: Harness all advances by ML community
e Algorithms (automatic differentiation, backpropagation, optimisers...) R O
e Software (TensorFlow, Pytorch, Keras, Jax etc) r
e Hardware (TPUs, GPUs )

q . _ . How To Use Neural Networks To Investigate Quantum Many-Body Alet . fcaﬂeo}?(;/am)
e Starting 1n practice: Physics - oftware
g p Juan Carrasquilla and Giacomo Torlai TUtorlal

PRX Quantum 2, 040201 — Published 12 November 2021 EfﬁCient PYthon hbrary (Spins mOdGIS)



2. Neural quantum states

Application 1 : Variational ansatz for ground-states of strongly correlated systems



Variational efficiency of neural quantum states 1n practice

First simulations on

quantum magnets (RBM)

Carleo & Troyer, Science (2017)
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2. Neural quantum states

Intermezzo 1 : Symmetries



Implementing symmetries

Convolutional Neural networks (CNN) for translation invariance

®) 5 — Sum Last pulling layer averages
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) 4 2
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Implementing symmetries

Group Convolutional Neural networks (GCNN) for all symmetry operations

®
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https://netket.org

Implementing symmetries

Group Convolutional Neural networks (GCNN) for all symmetry operations
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2. Neural quantum states

Application 2 : Tomography / Reconstruction of quantum states



Applications of neural quantum states

Application 2 : Tomography / Reconstruction of quantum states

e Physical context: Model a programmable quantum simulator (array of ~ 10 Rydberg atoms)

including known experimental errors.

Torla1 et al., (2019)

1. Experimental Measurement of 7,

Detuning

Vnn

1<

Rabi1 freq.

= projector in Rydberg state for atom 1

N N
vdW interactions

+ Decoherence (single-atom decay, dephasing)

e Steps:
2. Optimize RBM to reproduce the measurement
3. Sample the RBM to compute observables that can’t be measured experimentally
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2. Neural quantum states

Intermezzo 2 : Combining with other methods



Our work: Exotic liquid state and Diffusion Monte Carlo

e Goal: Study a 2d bosonic model which hosts an exotic liquid phase. Can RBM capture this ?

Bosons with competing ring exchanges Suggested Ground-state
Charge Plaquette Bose liquid (with
/ lj density wave state « Bose surface »)
| | »
k ‘/\O o o . .,, Ko
b e L &
O O
O O Energy
1 o O
HKl Ky = _KIZP1X1 K Z P1X2+P2X1 :E(O + d )
& = 7
e Result 1: RBM outperforms other e New Idea : Can use RBM as guiding wave-function
variational methods for Quantum Monte Carlo
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] X X —#— VMC energy a =2
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3. Creation of improved algorithms




Improving Monte Carlo simulations

e Monte Carlo simulations ubiquitous in physical sciences. However, sometimes ...

e A single Monte Carlo step 1s costly (and may not be accepted)

e.g. Fermionic determinant quantum MC : one step N3

leads to strong autocorrelations
e.g. near phase transition

e Idea: Couple the physical system to an hidden
one (e.g. through a RBM ) easier to sample and

which can propose large moves 1n phase space.
Coupling parameters are machine learned. p(h|x)

Fermions coupled
to transverse field
Ising model in 2d

10

—

4 Standard QMC: Large

autocorrelations, max. size 2(2

1] —e— SLDQMC | : : :
10 ? 1 _ Machine-learning guided QMC:
Xu et al, PRB (2017) — . .
10°f = e—e—e-ee—o—o—o—0—0—0-0000 INO autocorrelations, max. size 1002
10 100

L



Improving Monte Carlo simulations : Challenges

Reinforcement learning to help finding complex MC moves

e Physical context: Some magnets obey the (spin) ice rules at low temperature

} 1 1 1 1 1 | 1
1 } | } } } f }
2-in/2-out 2-in/2-out (S-in/l—out or 1-in/3-out’ |4-in or 4-out‘

Only configurations with 2in-2out everywhere are allowed

e Computational problem: How to sample this 2-in 2-out manifold efficiently ?

e Reinforcement learning !

Balance between exploration (of phase space) and exploitation | fl
(of knowledge of valid configurations through penalty/reward). l. ﬁ

= NRrihS

S
R " : :
,nterpreterem\ < The agent learns by itself the rules of this manifold
K} and finds complex MC moves to navigate through 1t
State

Wikipedia Zhao et al., 2019

Agent



Summary

A new tool in the box of experimental and computational physicists

e Many recent applications of ML in quantum physics / condensed matter

e Some works go beyond the hype and obtain first non-trivial results

e Some straight-forward applications 1n data mining / image

processing, some less straight-forward

.'

e Neural quantum states : efficient (benefit from ML advances), albeit not fully understood

(b) o

1 . —

Sum

L=

Channels:

e My take: Once you know what you want to do (method), entering the
field 1s easy : many tutorials, examples, lectures, open source codes online
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Perspectives

¢ Outlook 1 : Most of the ML techniques used so far are quite basic (from the Al point of view)
Room for using state-of-the-art ML (GAN, VAE, Deep RL ...) and improve performances

E.g. Autoregressive density samplers could strongly reduce the

computational cost of sampling neural quantum states Sharir e# 4/, PRL (2020)

Hibat Allah ez 4/, PRR (2020)
¢ QOutlook 2 : ML inside truly quantum mechanical setups: Quantum computing + ML marriage

ML-based control/help of quantum experiments/
computations

discounted future reward

Open or closed-loop control, o
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Quantum computing | ”."w ' ' \
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environment
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Perspectives

¢ Outlook 1 : Most of the ML techniques used so far are quite basic (from the Al point of view).
Room for using state-of-the-art ML (GAN, VAE, Deep RL ...) and improve performances

E.g. Autoregressive density samplers could strongly reduce the

computational cost of sampling neural quantum states Sharir e# 4/, PRL (2020)

Hibat Allah ez a/, PRR (2020)
¢ QOutlook 2 : ML inside truly quantum mechanical setups: Quantum computing + ML marriage

¢ Outlook 3: Can quantum physics help (classical) ML ?

e 1. Typical quantum methods (Matrix-Product States, DMRG)

have been repurposed to perform ML tasks (classification, YOYPY
time-series modeling)
Stoudenmire e al, ...

e We know how to improve these quantum methods (e.g.
tensor networks) and when they work / fail ? (few / a lot of
quantum entanglement). Can this help characterize or design
new ML methods and architectures ?

e 2. Construct quantum version of networks (e.g.
quantum Boltzmann machine).

H =3 a0i+ 3 buhi + > Wihior 10 Y hi" +T.) oy Imaginary time
j i 1] ) 1




